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ABSTRACT 

An analytical model for composite tubes possessing bend-twist coupling is derived. The tubes 

experience torsion when loaded in pure bending and bending when loaded in pure torsion. This is 

characterized by an off-axis shear center. A novel design for creating this coupling effect is described. 

Analytical expressions for the shear center distance are derived. Finite element analysis using shell 

elements is performed. The agreement in the results, especially the shear–center distance, is excellent. 

Experimental testing provided a second means of verification with good agreement. It is found that the 

location of the shear-center is independent of the shaft radius but proportional to the length of the tube. 

These properties are fundamentally different from the more common case of bend-twist coupling 

resulting from unbalanced shear flows in asymmetric cross-section of isotropic beams. The coefficient 

of mutual influence of the composite material affects the shear-center as well.    

 

1 INTRODUCTION 

Tubular structures are efficient when the loading is a combination of bending and torsion. Tubes 

made of homogeneous materials are axisymmetric and hence there will be no coupling between 

flexural and torsional deformations resulting from unbalanced shear flows. There are applications, 

however, where a transverse force has to be applied to a tubular lever eccentrically without resulting in 

twisting. Examples include golf clubs or the torsion bars in automobiles. Taking advantage of elastic 

coupling in anisotropic materials, shear centers at a distance from the geometric centroid can be 

achieved. Figure 1 illustrates an example of an eccentric loading that does not cause torsion because 

the load acts at the shear center.  

 

 

Figure 1: Composite tube loaded through an off axis shear center. The longitudinal lines indicate 

absence of rotation, not fiber orientation.  
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Recently, Rohde et al. [1, 2] have proposed a novel composite tube design which is intended to 

yield bend-twist coupling. The design is described in detail in the Results and Discussions section. In 

this paper we present a beam theory for an anisotropic composite tube subjected to combined bending 

and torsion to characterize the bend-twist coupling in the aforementioned tube by Rohde et al. The 

analytical results are verified using finite element analysis and experimental testing. A simple formula 

is derived for the shear center distance - distance of shear center from the axis of the tube. This can be 

used to optimize the design to achieve the desired shear center distance.  

It is worth pointing out that Rao and Chan [3] have developed an analytical model for the analysis 

of laminated tubes subjected to both an axial force and a twisting moment. They modified the 

lamination theory to account for the ply stiffness of a differential element along the circumference of 

the tube using the appropriate transformation. Then the stiffness of the tube was obtained by 

integrating the stiffness around the circumference. In the present approach, suitable assumptions are 

made about the deformation of the tube and the shear stress distribution. This leads to an independent 

beam theory for composite tubes. 

 

2 ANALYTICAL MODEL 

2.1 A beam theory for combined bending and torsion of tubes 

Consider a thin-walled tube with the tube axis parallel to the x-axis. The mean radius of the tube is 

R and the wall thickness h<<R. The tube is made of two anisotropic materials - top half  0     is 

made of Material 1 and the bottom half  2    is of Material 2. We assume that the tube is in a 

state of plane stress normal to the radial direction n (see Fig. 2) such that 0.
nn nx ns

      

Furthermore, we assume the hoop or circumferential stress 0.
ss

  Thus the two significant stresses 

are the axial stress 
xx

 and the shear stress .
xs

  We assume that the tube deforms such that plane 

sections remain plane and normal to the tube axis as in Bernoulli-Euler beam theory. As will be seen 

later this assumption works well for the thin-walled, long tubes considered in this study. Then the 

displacement field can be written as 

 

 

Figure 2: Cross section of the tube and the coordinate system. 
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where u0, v0 and w0 are the deflections of the beam axis. The axial strain takes the form 
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where 
y and z are the curvatures. We do not make any specific assumption about the rotation of the 

cross section except the average rotation of the cross-section about the x-axis is denoted by .
x

  But we 

assume the shear stress is uniform and given by 

 022
xs

T

R h
 


    (3) 

where T is the torque acting on a cross section. 

Though the above assumption about the shear stress distribution seems to be trivial, it is important 

in the present context. In traditional torsion theories the plane cross section of the tube is assumed to 

rotate as a rigid body leading to constant xs shear strain along the circumference of the tube. When the 

material is also homogenous it leads to constant shear stress xs which is consistent with the 

assumption in Eq.(3) above. However, when the tube is made of two different materials, the shear 

stress xs has to be continuous at the interface between the two materials, but the shear strain xs does 

not have to be continuous at the interface. That is why no specific kinematic assumption is made 

regarding the rotation of the tube. 

The constitutive relation for both materials can be written in the form [4] 
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  (4) 

where E and G are Young’s modulus and shear modulus, respectively, is the coupling term called 

coefficient of mutual influence of the material, and
ijS are the transformed compliance terms of the 

lamina . Then from (2), (3) and (4) we obtain 
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The force and bending moment resultants are defined as 

 

   

 
2

0

, , 1, ,

1, sin , cos

y z xx

A

xx

P M M z y dA

R R Rhd





   

 

 





 (6) 

where the integration is performed over the cross section of the tube. Substituting for xx from (5) we 

obtain 
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where the superscripts (1) and (2) refer to the two materials. Performing the integration we obtain 

relations between the force and moment resultants and deformations: 
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In the above equations 
xE is the average Young’s modulus given by  (1) (2) 2xx xE EE  ,  xE is the 

difference in the Young’s moduli,  (1) (2)

x xxE E E  . Similarly  (1)

,

(2)

, , 2x x x xs s x xs   and 

 (1) (2)

, , ,x xs xx xs x s   , 2A Rh  is the cross sectional area and I is the second moment of inertia 

given by 3I R h .  Equation (8) can be inverted to obtain 
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Thus one can calculate the deformations from the force and moment resultants. The deflections can be 

obtained by integrating the strains and curvatures as will be shown in the examples. From eq. (9) it is 

evident that a torque T can result in curvature 
z

 causing deflection of the tube in the z-direction. It is 

interesting to note that the torque T does not cause curvature
y

 and this is due to symmetry of the 

cross section about the z-axis. 

2.2 Angle of twist 

The average torsional rotation x is calculated as follows. Let us define the average unit angle of 

twist
xd dx  . The shear strain can be written as  
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where us is the displacement at a point in the tangential direction. The first term on the RHS of the 

above equation has been written as su x R   , where ( )s is the unit angle of twist at a given 

location s. Then the average unit angle of twist is obtained as 
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Note the second integral in the above equation vanishes as it is the contour integration of an exact 

differential. From the constitutive relation (4) the shear strain at a point on the circumference of the 

tube can be written in terms of stresses as 

 
,x xs xs
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x xsE G

 
     (12) 

From (12) it is clear that the shear strain xs will not be continuous across the interface between 

Materials 1 and 2 because of the difference in elastic constants and also due to the difference in 

bending stress xx . That is why we calculate the average rotation by integrating the unit angle of twist 

along the circumference of the tube.  

Substituting for xx from (5) into (12) and then substituting for xs from (12) into (11) the average 

unit angle of twist can be derived as 
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where 
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Once the deformations 0x and z are calculated from (9), the unit angle of twist can be calculated 

using (13). Using eq. (9) one can express 0x and z in eq. (13) in terms of force and moment resultants 

P, My and T. Thus it is obvious that a bending moment My about the y-axis can cause twisting in the 

tube demonstrating the bend-twist coupling.  

2.3 Shear stress due to transverse force 

The present formulation is based on Euler-Bernoulli beam theory and hence the shear stresses due 

to transverse forces Vy and Vz are not accounted for. Only the shear stresses due to the torque are 

included. The transverse shear stresses can be recovered from ( )
xx

x  using the equilibrium equation 
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as in classical mechanics of materials. First consider the shear force Vz. The bending moment created 

will be My and they are related by .y zdM dx V  Integrating the equilibrium equation we obtain 
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xs xss R d
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Substituting for xx from (5) we obtain 
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Again substituting for 0 andx z  from (9) in terms of My and using
y zdM dx V : 
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Performing the above integration we obtain an expression for shear stresses due to Vz:  
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Similarly we can derive an expression for transverse shear stress due to shear force Vy as: 
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Substituting for 
y from (9) and using

z ydM dx V  : 

 

(1

2

0

2

2

)

(2)

( ) (0) cos

sin
(0) , 0

sin
(0) , 2

y

xs xs

x

y

xs

x

y

x

x

x

s

x

x

V R
d

E I

V R

E I

V R

E

E

I

E

E



    


  


   

 

   

   



 (20) 

 

3 APPLICATION TO FIBER COMPOSITE TUBES  

3.1 Tube made of an anisotropic material with different orientations  

Recently Rohde et al. [2] have proposed a novel composite tube design which exhibits the bend-

twist coupling described in the previous section (see Fig. 3). In this design two different lay-ups or 

fiber orientations are used for each half of the circular tube. Assume the tube is made of a 

unidirectional fiber composite. The fiber-angle is the angle between the fiber direction (1-direction) 

and the x-axis. It is assumed    for the top half of the tube (Material 1) and   for the bottom half 

(Material 2) as shown in Fig. 3 and Fig. 4.  
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Figure 3: An isometric view of the composite tube showing different fiber orientations on the top and 

bottom halves. 

 

 

 

 

 

 

 

 

Figure 4: The left figure shows the top half of the tube with fiber orientation +α. Right figure shows 

the bottom half (fiber angle -α) viewed from the top. Note the difference in the direction of 

circumferential direction (s-axis) in the two figures. 

 

 The elastic constants in the x-s coordinate system can be obtained from the orthotropic 

engineering elastic constants 1 2 12 12, , andE E G  as follows [4]: 
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It is obvious from the above relations that for the present example 
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Then Eqs. (8) and (13) can be simplified as 
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From the above relations (2
nd

 and 4
th
 equations) one can note the coupling between the bending 

moment My and the torque T. The two relevant equations can be written as  
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In deriving the above relations we have used
2

0
2T R h  , 3

2 2J I R h  , and the symmetry 

relation 
, ,

.
x xs x xs x xs

E G   The shear stresses due to the transverse force Fz can be obtained from 

(18) using 0xE   and 
(1) (2)

x x xE E E  : 
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Note that the shear stress expression is the same for both top and bottom halves of the tube. The 

constant (0)xs can be evaluated from the fact that the moment of the shear stresses about the center 

should vanish as the force Fz is applied at the center. The final expression for shear stress takes the 

form 

 

2

( ) cosz z
xs

V R V R
y

I I
      (26) 

Thus the shear stress distribution will be symmetric about the z-axis such that ( ) ( )xs xsy y    . Thus 

the shear flow will be in the counter clockwise direction on the right half of the tube (y>0) and in the 

clockwise direction in the left half (y<0). The shear stresses will not contribute to rotation about the x-

axis as the material is also symmetric about the z-axis.  

 

3.2 Shear center 

Consider a cantilevered tube clamped at x=0. First we will consider the case where the tube is 

subjected to a force Fz at the tip x=L. The force is such that the line of action is through the center of 

the tube. The bending moment distribution is given by ( ) ( ).
y z

M x F L x    The tip rotation about 

the x-axis can be obtained from the second of Eq.(24): 
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Integrating the above equation and noting (0) 0
x

   we obtain the tip rotation 
F

x due the transverse 

force Fz as 
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From (24) the rotation 
T

x due to torque T can be derived as 
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  (29) 

The location of the shear center can be derived as follows. Let the shear center distance – distance of 

the shear center from the tube axis – be denoted by ey (Fig. 5). That is, if the transverse force Fz is 

applied at the shear center it would not produce any twisting of the tube, as the torque produced by the 

eccentric loading, Fz ey, would cause an angle of twist equal in magnitude but opposite in direction to 

that produced by the force Fz. Then, 

  
 
 

FT
xF x

x z y y

z

T

x

F

T
F e e

T





  


  (30) 

Substituting from (28) and (29) in the above equation, the shear center distance can be written in a 

non-dimensional form as 
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  (31) 

From (23) we note that the bending moment Mz due to a transverse force Fy will not cause any 

twisting.  Hence the shear center will be on the y-axis at a distance ey from the center of the tube. 

 

 
Figure 55: Shear Center for a tube made of an anisotropic material with different orientation of the 

principal material axis in the top and bottom halves of the tube as shown in Fig. 3. 

We have already shown that the transverse shear stresses due to the force Fz do not contribute to 

the rotation due to symmetry of the across section about the z-axis. Thus we note the eccentricity of 

the shear center in the present case is due do the extension-shear coupling of the material. In 

homogeneous beams the eccentricity of the shear center is due to asymmetry of the cross section, e.g., 

a C-channel.  That is why the shear center location in the present case is independent of the radius R, 

but proportional to the tube length L and the coefficients of mutual influence . 

3.3 Laminated composite tubes 

In most applications the tube has to be made of multiple plies with different fiber orientations to 

achieve a given bending stiffness, torsional stiffness and desired bend-twist coupling. In that case the 

laminated tube can be modeled as a tube with an equivalent anisotropic material. The compliance 

y 

z 

Material 1 

Material 2 

ey 

F

z 
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matrix  S (see Eq. (4) above) of such an equivalent material can be obtained from the in-plane 

stiffness [A] of the laminate as follows [4]: 

  
1

eqS h A


     (32) 

where h is the laminate thickness. It should be noted that the above idealization is valid only for thin-

walled tubes such that h/R<<1.  

 

 

4 FINITE ELEMENT ANALYSIS 

    The commercial finite element software Abaqus was used for computational analysis of 

aforementioned tubes. Eight-node doubly curved thick shell elements (S8R Element) were used to 

model the tubes. This element has six DOFs per node. About 30 elements were used along the 

circumference of the tube. The number of elements in the length direction was such that the aspect 

ratio of elements is approximately equal to unity. That is, the elements were almost square in shape. In 

the examples considered the tube was fixed at one end by setting all degrees of freedom equal to zero. 

At the free end, a reference node was created at the center of the tube and it was connected to the 

circumferential nodes using multipoint constraints. The transverse force and the couple were applied at 

the reference node. 

 

    
Figure 6: (a) FE mesh of the composite tube; (b) deformed shape after subjected to a torque at the tip. 

Note that the circumferential expansion of the tube is exaggerated in the figure. 

 

5 RESULTS AND DISCUSSION  

All examples below are concerned with a cantilevered tube of length L, mean radius R=10 mm and 

wall thickness h=2 mm. The tapered tube’s radius varies from 5 mm at the fixed end to 15 mm at the 

free end. 

 

5.1 Example 1A- one anisotropic material  

The laminate configuration or lay-up is denoted by 20* . The superscript* denotes that for the top 

half of the tube o
20    and for the bottom half o

20    (see Fig. 3). The elastic constants are: 

E1=138 GPa; E2=9 GPa; G12=6.9 GPa and
12

0.3  . Tubes of two different lengths, 200 and 300 mm, 

were considered to demonstrate the length-dependence of shear center location. Two different forces 

were considered: a transverse tip force Fz applied at the center of the tube and a torque T. In Table 1 

the FE results are compared with that obtained form the analytical method. It can be noted that the 

agreement for deflection, rotation and the shear center disctance are excellent. Furthermore, the ratio 

y
e L does not change at all for the two different lengths of the tube.  
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Table 1: Results for tubes made of one orthotropic material but with opposite fiber orientations 

in the top and bottom halves. The top half of the tube consists of [+20] layers and the bottom half 

of [-20] layers. 

 

 

5.2 Example 1B - laminated tube 

In this example we consider a laminated tube. The lay-up is denoted by [0/(20*)2/0]T. Explicitly 

stated, the top half of the tube has a lay-up given by [0/(20)2/0]T and the bottom half  [0/(-20)2/0]T. The 

elastic constants of the ply material were same as in Example 1A. The forces applied are similar to the 

previous example. The results are presented in Table 2. Again one notices that the agreement between 

the analytical results and FEA results is excellent.  The shear center distance specified by  
ye L  is 

smaller, i.e., the shear center is closer to the tube center, for the laminated tube compared to the 20-

degree lamina in Example 1A, because the laminate includes some 0-degree plies. The reduction in the 

effective coefficient of mutual influence due to the presence of 0-degree plies reduces the shear center 

distance also. 

 

 

Table 2: results for tubes made of two different composite laminates. The lay-up for the top half of the 

tube is [0/202/0]S; for the bottom half [0/-202/0]S 

 

 

 

 5.4 Experimental validation 

An experimental method for quantifying ey/L was developed. A special apparatus was constructed 

to load the tip with an adjustable torque. The experimental set-up is shown in Figures 7 and 8. Digital 

image correlation (DIC) was used to measure tip rotation and deflection. From these measurements 

shear center values were determined as the length of moment arm that results in bending absent 

twisting. Repeating this process for different shaft lengths and orientations allowed for a final ey/L 

measurement for the given design. Steps of the experiment were repeated to reduce the various 

uncertainties in these measurements. The experiment utilized three dimensional DIC, a vice to 

simulate the rigid boundary of a cantilever, an adjustable moment arm on which to load the specimen, 

and the means to manufacture composite shaft specimens. The results were compared against finite 

element and analytical predictions. The final average experimental ey/L for all four shafts was 8% 

higher than what the analytical method and FEA predicted, Table 3. 

 

Length  

L (mm) 

Load 

Fz (N) 

T (N-mm) 

Tip deflection 

 3

0 ( ) 10 mmw L    

Tip rotation ( )x L   

(10
-6

 Radians) 

Shear Center 

 
ye L   

FEA Analytical FEA Analytical FEA Analytical 

200 
Fz = 1  9.162 9.211 77.21 78.70 

0.202  0.202 
T = 1  77.14 78.71 1.915 1.951 

300 
Fz = 1 30.71 31.11 174.0 177.0 

0.202  0.202 
T = 1 174.0 177.0 2.881 2.920 

Length  

L (mm) 

Load 

Fz (N) 

T (N-mm) 

Tip deflection 

 6

0 ( ) 10 mmw L    

Tip rotation ( )x L   

(10
-6

 Radians) 

Shear Center 

 
ye L   

FEA Analytical FEA Analytical FEA Analytical 

200 
Fz = 1  4,462 4,254 25.23 25.49 

0.0820  0.0820 
T = 1  25.23 25.49 1.539 1.555 

300 
Fz = 1 14,610 14,350 56.83 57.36 

0.0820  0.0820 
T = 1 56.8 57.36 2.31 2.332 
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Fig. 7 Schematic of the experimental set-up 

 

 

 

Fig. 8 Experimental set-up 

 

 

Table 3: Comparison of shear-center distances using various methods 

 

Method Experimental Analytical FEA 

 
ye L  (mm/mm) 0.099 0.092 0.092 

 

6 SUMMARY 

An analytical model is presented for thin walled composite tubes subjected to a combination of 

bending and torsion. The methods are applied to a novel design of composite tubes with lay-ups in the 

top and bottom halves of the cross section. Due to the difference in lay-ups, the tube exhibits strong 

bend-twist coupling and the shear center is at a distance from the geometric center of the tube. The 

shear center distance is independent of the tube radius but proportional to the length of the tube and 

the effective coefficient of mutual influence of the laminates. The results are verified using finite 

element analysis and experimental testing. The excellent agreement in results suggests that the 

assumptions made in the analytical model are reasonable and correct. 
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